Hierarchical Routing

Scalable Routing for the Internet

Daniel Zappala

Brigham Young University
Computer Science Department
1. Hierarchical Routing

2. Intra-Domain Routing
 - RIP
 - OSPF

3. Inter-Domain Routing

4. Take-Home Points
Question of the Day

- **How can routing scale to a network the size of the Internet?**

 - **scale**
 - 200 million destinations - can't store all destinations or all prefixes in routing tables
 - link-state: flood link state packets to all hosts in the entire Internet
 - distance-vector: send routing table for all networks to each of your neighbors

 - **administrative authority**
 - the Internet is a network of networks
 - each network administrator wants to control routing in her organization – may even use a different routing algorithm
Overview

- aggregate routers into regions: domains or autonomous systems (AS)
- *intra-domain routing*
 - routing within a domain
 - run a single routing protocol in the domain
- *inter-domain routing*
 - routing between domains
 - every domain must agree to run the same inter-domain routing protocol
- *border router or gateway*
 - router at the border of your domain and a peer, runs
 - must run both intra- and inter-domain routing protocols
Domains and Border Routers

- forwarding table entries on a border router are created by both the intra-domain and inter-domain routing protocols
 - intra-domain sets routes for internal destinations
 - inter-domain sets routes for external destinations
Hierarchical Routing

- router in AS1 gets a datagram for an external destination
- which border router does it choose?
- inter-domain routing protocol needs to
 - learn destinations reachable through each border router
 - propagate routes to all routers inside the domain
 - some destinations may be reachable by more than one border router – choose the closest one

Diagram:

- Network with ASes AS1, AS2, AS3
- Border routers labeled 1a, 1b, 1c, 2a, 2b, 3a, 3b, 3c
- Intra-AS routing algorithm
- Inter-AS routing algorithm
- Forwarding table

Daniel Zappala 6/25
Hierarchical Routing Procedure

1. Learn from inter-AS protocol that subnet x is reachable via multiple gateways.
2. Use routing info from intra-AS protocol to determine costs of least-cost paths to each of the gateways.
3. Hot potato routing: Choose the gateway that has the smallest least cost.
4. Determine from forwarding table the interface I that leads to least-cost gateway. Enter (x,I) in forwarding table.
Intra-Domain Routing

- also known as an interior gateway protocol (IGP)
- most common protocols
 - RIP: Routing Information Protocol
 - OSPF: Open Shortest Path First
 - IGRP: Interior Gateway Routing Protocol (Cisco)
RIP: Routing Information Protocol

- distance-vector algorithm
- included in BSD-UNIX in 1982, most Unix and Linux distributions since then
- each link cost = 1, infinity = 16 (limits counting to infinity problem)
- exchanges distance vectors with neighbors every 30 seconds (called an advertisement)
- each advertisement contains a list of up to 25 destination networks
- RIP2 - supports subnet masks, adds authentication for advertisements
- RIPng - supports IPv6
RIP Example

- routing table for D:

<table>
<thead>
<tr>
<th>Destination Subnet</th>
<th>Next Router</th>
<th>Number of Hops to Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>y</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>z</td>
<td>B</td>
<td>7</td>
</tr>
<tr>
<td>x</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>⋮</td>
<td>⋮</td>
<td>⋮</td>
</tr>
</tbody>
</table>
RIP Example

- advertisement from A:

<table>
<thead>
<tr>
<th>Destination Subnet</th>
<th>Next Router</th>
<th>Number of Hops to Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td>C</td>
<td>4</td>
</tr>
<tr>
<td>w</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>x</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>....</td>
<td>....</td>
<td>....</td>
</tr>
</tbody>
</table>

- routing table for D:

<table>
<thead>
<tr>
<th>Destination Subnet</th>
<th>Next Router</th>
<th>Number of Hops to Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>y</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>z</td>
<td>A</td>
<td>5</td>
</tr>
<tr>
<td>....</td>
<td>....</td>
<td>....</td>
</tr>
</tbody>
</table>

- D changes its route for z to use A instead of B (cost of 5 instead of 7)
RIP Link Failure and Recovery

- if no advertisement heard after 180 sec, neighbor/link declared dead
 - routes using neighbor invalidated
 - new advertisements sent to neighbors
 - neighbors in turn send out new advertisements (if tables changed)
 - link failure info quickly propagates to entire network
 - poison reverse used help with count-to-infinity
RIP Table Processing

- RIP run as application-level process called routed (route daemon)
- advertisements sent in UDP packets, periodically repeated
OSPF: Open Shortest Path First

- open: publicly available
- uses link-state algorithm
 - link-state advertisements (LSAs) contain one entry per neighbor router
 - LSAs sent to each router in the domain
 - LSAs sent as OSPF messages directly over IP (no TCP and no UDP)
- security: all messages authenticated
- multi-path: multiple same-cost paths allowed
- TOS: multiple cost metrics per link (e.g. satellite can be low cost for bandwidth, high cost for latency)
- multicast support: MOSPF uses OSPF link-state database
- hierarchical: divide a domain into multiple areas
Hierarchical Routing

OSPF Hierarchy

- area routers learn topology and routes for area
- area border routers summarize distances for networks in their area, advertise to other area routers on backbone
- backbone routers run OSPF on the backbone
- boundary routers connect to Internet
Inter-Domain Routing: BGP

- Border Gateway Protocol (BGP) - the standard for Internet inter-domain routing
- BGP allows domains to
 - advertise routes for internal networks to the rest of the Internet
 - obtain routes for external networks from other domains
 - use policy to select routes (not just shortest path)
BGP Basics

- BGP peers (routers) establish TCP connections and exchange routing information (may span several non-BGP routers).
- When AS1 advertises a prefix (network) to AS2, AS1 is promising it will forward any datagrams sent to that prefix.
- Prefixes can be aggregated along any bit boundary.

Key:
- eBGP session
- iBGP session
BGP Reachability

- advertise prefixes that are *reachable* by your domain
- example
 - 3a uses BGP to send reachability info to 1c for internal networks
 - 1c uses OSPF/IGRP to distribute reachability to other routers in AS1
 - 1b uses BGP to advertise these networks to 2a
 - any router that learns about a new/updated prefix creates/updates forwarding table entry
BGP Attributes

- attributes may be attached to prefixes = route
- important attributes
 - **AS-PATH**: an ordered list of ASs in the route
 - **NEXT-HOP**: IP address of the router which should be used as the BGP next hop to the destination
- example
 - when 3a advertises a route to 1c, it uses its own IP address as the NEXT-HOP and the AS-PATH is AS3.
 - when 1b advertises the same route to 2a, it changes the NEXT-HOP to 1b’s address, and the AS-PATH is AS3-AS1
BGP Route Selection

- BGP routers use policies to determine which routes they will accept and advertise to their peers
- policy eliminates routes for which you don’t want to carry traffic
- route selection among multiple routes for same prefix: complicated rules
 - largest weight
 - highest local preference (e.g. prefer directly-connected routes, or routes over Internet2)
 - shortest AS-PATH
 - cheapest internal route to BGP NEXT-HOP
BGP Messages

- exchanged using TCP
- message types
 - OPEN: open TCP connection to peer and authenticate sender
 - UPDATE: advertise new paths, withdraw old paths
 - KEEPALIVE: keep connection alive in absence of updates, ACKs OPEN request
 - NOTIFICATION: reports errors, can also close connection
BGP Policy

- **provider networks:** A, B, C
- **customer networks:** X, W, Y
- **X is dual-homed:** attached to two networks
- **policy**
 - X does not want to route from B to C via itself
 - X will not advertise to B a route for C
BGP Policy

- A advertises path AW to B
- B advertises path BAW to X
- should B advertise path BAW to C?
BGP Policy

- A advertises path AW to B
- B advertises path BAW to X
- should B advertise path BAW to C?
 - No! B gets no benefit from routing CBAW since neither C nor W are customers of B
 - B wants to force C to route via A
 - B wants to route only to/from its own customers
Separation of Concerns

- **policy**
 - inter-domain: want control over how traffic is routed, who routes to domain, needs policy
 - intra-domain: single administrator, so no policy decisions needed

- **scale**
 - hierarchical routing saves table size, reduces update traffic

- **performance**
 - intra-domain focuses on performance
 - inter-domain focuses on global reachability, policy
Take-Home Points

- use hierarchy to scale
- intra-domain routing finds routes within a domain
- inter-domain routing uses BGP
 - path vector routing
 - uses policy to select the best path
 - uses policy to avoid advertising paths if a domain doesn’t want that path used