Queueing Theory
CS 360 Internet Programming

Daniel Zappala
With substantial help and figures Steve Muench, University of Washington

Brigham Young University
Computer Science Department
Motivation

How will your server handle the load of a 1,000 clients per minute? 2,000? 10,000?

options

- wait and see
- run controlled experiments or a simulation
- use fundamental math to understand how servers react to load

increasing generality as you go down the list
Single Server Queue
Single Server Queue

- people lined up at the grocery store (only one checker open)
- processes waiting to use a CPU (single core system)
- requests waiting to be handled by a web server
Single Server Queue

- λ: arrival rate
- μ: service rate
Multiple Server Queue

- people lined up at the grocery store (multiple checkout lines open)
- processes waiting to use a CPU (multiple core system)
- requests waiting to be handled by a distributed database server
Queueing Theory

- given arrival rate λ and service rate μ:
 - what is the average number of items in the queue?
 - what is the average time spent waiting in the queue?
- used for computer system analysis, traffic engineering, system design
Notation

\(X/Y/N\)

- \(X\) = arrival rate distribution
- \(Y\) = departure rate distribution
- \(N\) = number of servers
D/D/1 Queue

- D/D/1 Queue
 - $D =$ deterministic arrival rate
 - $D =$ deterministic service rate
 - $1 =$ one server
D/D/1 Graphical Analysis

- vehicles arriving at a toll booth

D/D/1 Queue

- Delay of nth arriving vehicle
- Maximum queue
- Maximum delay
- Total vehicle delay

Queue at time, \(t_1 \)

Departure Rate

Arrival Rate
Poisson Distribution

- most systems are non-deterministic!
- discrete probability distribution
- probability of a given number of events occurring in a fixed interval of time and/or space
- assumptions
 - events occur with a known average rate
 - events are independent of the time since the last event (memoryless)
- often used to model users arriving in a system
 - people lined up at the grocery store
 - processes waiting to use a CPU
 - requests waiting to be handled by a web server
Poisson Distribution

\[P(n) = \frac{(\lambda t)^n e^{-\lambda t}}{n!} \]

- \(P(n) \) = probability of \(n \) users arriving in time \(t \)
- \(n \) = number of users arriving over time \(t \)
- \(\lambda \) = average arrival rate of users to system
- \(t \) = duration of time over which users are counted
Using Poisson

- probability of exactly 4 vehicles arriving
 \[P(n = 4) \]
- probability of less than 4 vehicles arriving
 \[P(n < 4) = P(0) + P(1) + P(2) + P(3) \]
- probability of 4 or more vehicles arriving
 \[P(n \geq 4) = 1 - P(0) - P(1) - P(2) - P(3) \]
Poisson Example

Vehicle arrivals at the Olympic National Park main gate are assumed Poisson distributed with an average arrival rate of 1 vehicle every 5 minutes. What is the probability of the following:

1. exactly 2 vehicles arrive in a 15 minute interval?
2. less than 2 vehicles arrive in a 15 minute interval?
3. more than 2 vehicles arrive in a 15 minute interval?
Introduction

Poisson Analysis

Poisson Example

1. \[P(2) = \frac{(0.2 \times 15)^2 e^{-(0.2)15}}{2!} = 0.224 = 22.4\% \]
2. \[P(n < 2) = P(0) + P(1) \]
3. \[P(n > 2) = 1 - (P(0) + P(1) + P(2)) \]
Poisson Example
Poisson Example

The graph illustrates the probability distribution of arrivals in 15 minutes for two different mean arrival rates:

- Blue bars: Mean = 0.2 vehicles/minute
- Red bars: Mean = 0.5 vehicles/minute

The x-axis represents the number of arrivals in 15 minutes, while the y-axis represents the probability of occurrence.
Poisson Example

- time between events has an exponential distribution
M/D/1 Queue

- M/D/1 Queue
 - $M =$ Poisson arrival process
 - $D =$ deterministic service rate
 - $1 =$ one server
- $\rho = \frac{\lambda}{\mu}$ (utilization)
- average queue length, $\bar{Q} = \frac{\rho^2}{2(1-\rho)}$
- average wait time in queue, $\bar{w} = \frac{1}{2\mu} \left(\frac{\rho}{1-\rho} \right)$
- average time in system, $\bar{t} = \frac{1}{2\mu} \left(\frac{2-\rho}{1-\rho} \right)$
M/M/1 Queue

- **M/M/1 Queue**
 - M = Poisson arrival process
 - M = exponential service rate (continuous time distribution)
 - 1 = one server

- $\rho = \frac{\lambda}{\mu}$ (utilization)

- average queue length, $\bar{Q} = \frac{\lambda^2}{\mu(\mu-\lambda)} = \frac{\rho^2}{(1-\rho)}$

- average wait time in queue, $\bar{w} = \frac{\lambda}{\mu(\mu-\lambda)} = \frac{\rho}{\mu-\lambda}$

- average time in system, $\bar{t} = \frac{1}{\mu-\lambda}$
M/M/N Queue

- M/M/N Queue
 - M = Poisson arrival process
 - M = exponential service rate (continuous time distribution)
 - N = multiple servers

- $\rho = \frac{\lambda}{\mu}$ (utilization)

- average queue length, $\bar{Q} = \frac{P_0\rho^{N+1}}{N!N} \left[\frac{1}{(1-\rho/N)^2} \right]$

- average wait time in queue, $\bar{w} = \frac{\rho+\bar{Q}}{\lambda} - \frac{1}{\mu}$

- average time in system, $\bar{t} = \frac{\rho+\bar{Q}}{\lambda}$
M/M/N Queue

• probability of no events

\[P_0 = \frac{1}{\sum_{n_c=0}^{N-1} \frac{\rho^{n_c}}{n_c!} + \frac{\rho^N}{N!(1-\rho/N)}} \]

• probability of having \(n \) events

\[P_n = \frac{\rho^n P_0}{n!}, n \leq N \]

\[P_n = \frac{\rho^n P_0}{N^{n-N}N!}, n \geq N \]

• probability of being in a queue

\[P_{n>N} = \frac{P_0 \rho^{N+1}}{N!N(1-\rho/N)} \]
stability condition:

- $\rho = \frac{\lambda}{\mu}$ (utilization) must be < 1
- average arrival rate $< \text{average service rate}$ or queue will be infinite

(Chart from Mark B. Friedman)